在Rt△ABC中,∠=90°,AD平分∠CAB交CB于D,CD=3,BD=5,求AC和AD的长。
展开全部
做DE垂直于AB于E,三角形ADC和三角形ADE全等,故DE=3。EB^2=DB^2-DE^2=16,EB=4。
三角形BED和三角形BCA相似,所以AC/DE=BC/BE,解得AC=6。
三角形BED和三角形BCA相似,所以AC/DE=BC/BE,解得AC=6。
追问
AD列???
追答
∵△ACD≌△AED
∴ac=ae∵C=90°
AD^2=ae^2+de^2
=ac^2+de^2=6*6+3*3
=45
ad=3根号5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AD平分∠CAB,两个直角
∴CD=DE
∵CD=3
∴DE=3
∵BD=5
∴BE=4(勾股,有点跳步骤)
∵△ACD≌△AED(自己证)
∴ac=ae∵C=90°
∴AC^2+BC^2=AB^2(平方,看得懂?)
∴AC^2+8&2=(AC+4)^2
AC=6
∴CD=DE
∵CD=3
∴DE=3
∵BD=5
∴BE=4(勾股,有点跳步骤)
∵△ACD≌△AED(自己证)
∴ac=ae∵C=90°
∴AC^2+BC^2=AB^2(平方,看得懂?)
∴AC^2+8&2=(AC+4)^2
AC=6
追问
倒数第2个写的神马玩意??∴AC^2+8&2=(AC+4)^2
还有我要的AD列??
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
做DE垂直于AB于E,三角形ADC和三角形ADE全等,故DE=3。EB^2=DB^2-DE^2=16,EB=4。
设AC为x,则AE也为x,又勾股定理可得,x^2+8^2=(x+4)^2解得x=6,即AC=6,在三角形ACD中由勾股定理可得AD=3倍根号5。
设AC为x,则AE也为x,又勾股定理可得,x^2+8^2=(x+4)^2解得x=6,即AC=6,在三角形ACD中由勾股定理可得AD=3倍根号5。
追问
步骤写清楚,给悬赏。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前面都是一样,但是△ADE≌△BDE?从已知条件是无法证明△ADE和△BDE是全等的!其实很简单,AC已求出是6,CD=3,在Rt△ACD中,根据勾股定理,AC^2+CD^2=AD^2,即6^2+3^2=AD^2,可以求出AD=3√5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询