设集合A={(x,y)|(x-2)^2+y^2=1,xy∈R},B={(x,y)|2m≤x+y≤2m+1,xy∈R},若A∪B≠空集,则m的取值范围是
设集合A={(x,y)|(x-2)^2+y^2=1,xy∈R},B={(x,y)|2m≤x+y≤2m+1,xy∈R},若A∪B≠空集,则m的取值范围是要过程为什么...
设集合A={(x,y)|(x-2)^2+y^2=1,xy∈R},B={(x,y)|2m≤x+y≤2m+1,xy∈R},若A∪B≠空集,则m的取值范围是
要过程为什么 展开
要过程为什么 展开
展开全部
集合A={(x,y)|(x-2)^2+y^2=1,xy∈R}表示以C(2,0)为圆心,1为半径的圆,
B={(x,y)|2m≤x+y≤2m+1,xy∈R}表示平行线l1:x+y=2m与l2:x+y=2m+1之间的区域,
A∪B≠空集,
<==>C到l1或l2的距离<=1,
<==>|2-2m|/√2<=1,或|2-(2m+1)|/√2<=1,
<==>-√2<=2m-2<=√2,或-√2<=2m-1<=√2,
<==>(2-√2)/2<=m<=(2+√2)/2,或(1-√2)/2<=(1+√2)/2,
求并集得(1-√2)/2<=m<=(2+√2)/2,为所求.
B={(x,y)|2m≤x+y≤2m+1,xy∈R}表示平行线l1:x+y=2m与l2:x+y=2m+1之间的区域,
A∪B≠空集,
<==>C到l1或l2的距离<=1,
<==>|2-2m|/√2<=1,或|2-(2m+1)|/√2<=1,
<==>-√2<=2m-2<=√2,或-√2<=2m-1<=√2,
<==>(2-√2)/2<=m<=(2+√2)/2,或(1-√2)/2<=(1+√2)/2,
求并集得(1-√2)/2<=m<=(2+√2)/2,为所求.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询