如图1,OA=2,OB=4,以A点为顶点,AB为腰在第三象限作等腰Rt三角形ABC,求C点的坐标 如

如图1,OA=2,OB=4,以A点为顶点,AB为腰在第三象限作等腰Rt三角形ABC,求C点的坐标如图2,P为y负半轴上的一个动点,... 如图1,OA=2,OB=4,以A点为顶点,AB为腰在第三象限作等腰Rt三角形ABC,求C点的坐标 如图2,P为y负半轴上的一个动点, 展开
 我来答
nudfa
2013-10-15 · TA获得超过613个赞
知道答主
回答量:90
采纳率:100%
帮助的人:29万
展开全部
解:(1)过C作CM⊥x轴于M点,如图1,
∵CM⊥OA,AC⊥AB,
∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°
则∠MAC=∠OBA
在△MAC和△OBA中

则△MAC≌△OBA(AAS)
则CM=OA=2,MA=OB=4,则点C的坐标为(-6,-2);

(2)过D作DQ⊥OP于Q点,如图2,则OP-DE=PQ,∠APO+∠QPD=90°

∠APO+∠OAP=90°,则∠QPD=∠OAP,
在△AOP和△PDQ中

则△AOP≌△PDQ(AAS)
∴OP-DE=PQ=OA=2;

(3)结论②是正确的,m+n=-4,
如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,

则FS=FT=2,∠FHS=∠HFT=∠FGT,
在△FSH和△FTG中

则△FSH≌△FTG(AAS)
则GT=HS,
又∵G(0,m),H(n,0),点F坐标为(-2,-2),
∴OT═OS=2,OG=|m|=-m,OH=n,
∴GT=OG-OT=-m-2,HS=OH+OS=n+2,
则-2-m=n+2,
则m+n=-4.
匿名用户
2013-06-16
展开全部
解:(1)如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中
{∠CMA=∠AOB=90°∠MAC=∠OBAAC=AB
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(-6,-2).
(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ
∴OP-DE=OP-OQ=PQ,
∵∠APO+∠QPD=90°,
∠APO+∠OAP=90°,
∴∠QPD=∠OAP,
在△AOP和△PQD中,
{∠AOP=PQD=90°∠OAP=∠QPDAP=PD,
∴△AOP≌△PQD(AAS).
∴PQ=OA=2.
即OP-DE=2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-06-16
展开全部
∵CM⊥OA,AC⊥AB,
∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°
则∠MAC=∠OBA
在△MAC和△OBA中∠CMA=∠AOB=90°∠MAC=∠OBAAC=AB
则△MAC≌△OBA(AAS)
则CM=OA=2,MA=OB=4,则点C的坐标为(-6,-2);

(2)过D作DQ⊥OP于Q点,如图2,则OP-DE=PQ,∠APO+∠QPD=90°
∠APO+∠OAP=90°,则∠QPD=∠OAP,
在△AOP和△PDQ中∠AOP=∠PQD=90°∠QPD=∠OAPAP=PD
则△AOP≌△PDQ(AAS)
∴OP-DE=PQ=OA=2;

(3)结论②是正确的,m+n=-4,
如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,
则FS=FT=2,∠FHS=∠HFT=∠FGT,
在△FSH和△FTG中∠FSH=∠FTG=90°∠FHS=∠FGTFS=FT
则△FSH≌△FTG(AAS)
则GT=HS,
又∵G(0,m),H(n,0),点F坐标为(-2,-2),
∴OT═OS=2,OG=|m|=-m,OH=n,
∴GT=OG-OT=-m-2,HS=OH+OS=n+2,
则-2-m=n+2,
则m+n=-4.点评:本题考查了三角形全等的判定和性质;熟记三角形全等的求法,尤其是Rt△,数形结合是重要的解题方法,同学们一定要学会应用.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式