导数的定义求法是怎样的
2个回答
展开全部
导数有很多公式,现在你如果拿来解一些比如求单调的增减性等较简单的,记住,然后套用公式就好了,公式在百度百科中有详细的记录。
(2)几种常见函数的导数公式:
①
c'=0(c为常数);
②
(x^n)'=
nx^(n-1)
(n∈q);
③
(sinx)'
=
cosx;
④
(cosx)'
=
-
sinx;
⑤
(e^x)'
=
e^x;
⑥
(a^x)'
=
(a^x)
*
ina
(ln为自然对数)
⑦
(inx)'
=
1/x(ln为自然对数)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
(2)几种常见函数的导数公式:
①
c'=0(c为常数);
②
(x^n)'=
nx^(n-1)
(n∈q);
③
(sinx)'
=
cosx;
④
(cosx)'
=
-
sinx;
⑤
(e^x)'
=
e^x;
⑥
(a^x)'
=
(a^x)
*
ina
(ln为自然对数)
⑦
(inx)'
=
1/x(ln为自然对数)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数实质上就是一个求极限的过程
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.可导的函数一定连续.不连续的函数一定不可导.
导数的几何意义是斜率
1)求函数y=f(x)在x0处导数的步骤:
①
求函数的增量Δy=f(x0+Δx)-f(x0)
②
求平均变化率
③
取极限,得导数.
2)如果你已学导数公式
①
C'=0(C为常数函数);
②
(x^u)'=
ux^(u-1)
(n∈Q);
③
(sinx)'
=
cosx
(cosx)'
=
-sinx;
④
(a^x)'
=
a^xlna
(ln为自然对数)
记住(e^x)'
=
e^x;⑤
(logax)'
=(xlna)^(-1),(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
记住
(Inx)'
=
1/x(ln为自然对数)
(3)导数的四则运算法则(和、差、积、商):①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
(4)复合函数的导数
y(x)'=y'*x
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.可导的函数一定连续.不连续的函数一定不可导.
导数的几何意义是斜率
1)求函数y=f(x)在x0处导数的步骤:
①
求函数的增量Δy=f(x0+Δx)-f(x0)
②
求平均变化率
③
取极限,得导数.
2)如果你已学导数公式
①
C'=0(C为常数函数);
②
(x^u)'=
ux^(u-1)
(n∈Q);
③
(sinx)'
=
cosx
(cosx)'
=
-sinx;
④
(a^x)'
=
a^xlna
(ln为自然对数)
记住(e^x)'
=
e^x;⑤
(logax)'
=(xlna)^(-1),(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
记住
(Inx)'
=
1/x(ln为自然对数)
(3)导数的四则运算法则(和、差、积、商):①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2
(4)复合函数的导数
y(x)'=y'*x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询