这道矩阵题咋做!求帮助!
展开全部
把式子写成(A-2E)*(E-B)等于(-2E)的形式。就可以证明它可逆。第二是证明A与B是可交换的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
(1)
AB=A+2B
AB-A=2B
A(B-E)=2B-2E+2E
A(B-E)=2(B-E)+2E
(A-2E)(B-E)=2E
½(A-2E)·(B-E)=E
所以A-2E可逆
(2)证明: 由 A+2B=AB 得
(A-2E)(B-E) = 2E
所以 B-E 可逆, 且 (B-E)^-1 = (1/2)(A-2E).
所以 (B-E)(A-2E) = 2E
整理有 BA = A+2B
再由已知得 AB=BA
AB=A+2B
AB-A=2B
A(B-E)=2B-2E+2E
A(B-E)=2(B-E)+2E
(A-2E)(B-E)=2E
½(A-2E)·(B-E)=E
所以A-2E可逆
(2)证明: 由 A+2B=AB 得
(A-2E)(B-E) = 2E
所以 B-E 可逆, 且 (B-E)^-1 = (1/2)(A-2E).
所以 (B-E)(A-2E) = 2E
整理有 BA = A+2B
再由已知得 AB=BA
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询