椭圆mx^2+ny^2=1与y=1-x交于M、N两点,原点与线段MN中点的连线的斜率为√2/2,求m/n的值
1个回答
展开全部
联立椭圆方程与直线方程,得(m+n)x^2-2nx+n-1=0
设点M,N的坐标分别是(x1,y1),(x2,y2),
则弦MN的中点坐标是[(x1+x2)/2,(y1+y2)/2]
所以原点与线段MN中点的连线斜率是(y1+y2)/(x1+x2)=√2/2
又y1=1-x1,y2=1-x2,x1+x2=2n/(m+n),代入、整理得
√2/2=(y1+y2)/(x1+x2)=(2-x1-y2)/(x1+x2)=m/n
所以,m/n=√2/2
设点M,N的坐标分别是(x1,y1),(x2,y2),
则弦MN的中点坐标是[(x1+x2)/2,(y1+y2)/2]
所以原点与线段MN中点的连线斜率是(y1+y2)/(x1+x2)=√2/2
又y1=1-x1,y2=1-x2,x1+x2=2n/(m+n),代入、整理得
√2/2=(y1+y2)/(x1+x2)=(2-x1-y2)/(x1+x2)=m/n
所以,m/n=√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询