已知函数f(x-y,y/x)=x^2-y^2,求f(x,y)
结果为:f(x,y)=x²(y+1)/(y-1)
解题过程如下:
f(x-y,y/x)=x^2-y^2
令a=x-y
b=x/y
则x=by
a=by-y
y=a/(b-1)
x=ab/(b-1)
则x+y=a(b+1)/(b-1)
所以x²-y²=a²(b+1)/(b-1)
f(a,b)=a²(b+1)/(b-1)
∴f(x,y)=x²(y+1)/(y-1)
扩展资料
求二次函数的方法:
与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;
当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
f(x,y)=x²(y+1)/(y-1)。
解题过程:
令a=x-y
b=x/y
则x=by
a=by-y
y=a/(b-1)
x=ab/(b-1)
则x+y=a(b+1)/(b-1)
所以x²-y²=a²(b+1)/(b-1)
f(a,b)=a²(b+1)/(b-1)
f(x,y)=x²(y+1)/(y-1)
扩展资料:
函数f(x)表示的是数集中的元素与另一个数集中的元素之间的等量关系。
给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
b=x/y
则x=by
a=by-y
y=a/(b-1)
x=ab/(b-1)
则x+y=a(b+1)/(b-1)
所以x²-y²=a²(b+1)/(b-1)
f(a,b)=a²(b+1)/(b-1)
f(x,y)=x²(y+1)/(y-1)