设函数f(x)在闭区间[a,b]上连续,a<x1<x2<…<xn<b,证明:至少存在一点p∈[x1
设函数f(x)在闭区间[a,b]上连续,a<x1<x2<…<xn<b,证明:至少存在一点p∈[x1,xn],使得f(p)=1/n[f(x1)+f(x2)+…+f(xn)]...
设函数f(x)在闭区间[a,b]上连续,a<x1<x2<…<xn<b,证明:至少存在一点p∈[x1,xn],使得f(p)=1/n[f(x1)+f(x2)+…+f(xn)]
展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询