求证:(a1+a2+…+an)/n>=(a1*a2*…*an)^(1/n)
展开全部
用初等知识不好证,你自己尝试用数学归纳法证吧。。
不过用稍微高点的知识,就是凸凹函数,容易证明。
设f(x)=inx(x>1)
f''(x)=-1/x^2<0恒成立。
所以f(x)为(1,+∝)上的凸函数。
所以由凸函数的琴生不等式:
f[(a1+a1+……+an)/n]>=[f(a1)+f(a2)+……+f(an)]/n
也就是
in[(a1+a2+……+an)/n]>=(1/n)[in(a1*a2*……*an)]——(*)
in[(a1+a2+……+an)/n]>=in[n次根号下(a1*a2*……*an)]
去对数。
(a1+a2+……+an)/n>=n次根号下(a1*a2*……*an)
即算术平均数>=几何平均数
至于你推出的结论,在(*)处,运用放缩,当有:
in[(a1+a2+……+an)/n]>=(1/n)[in(a1*a2*……*an)]>=1/2[in(a1*a2*……*an)]
,
显然对于n>2
(1/n)[in(a1*a2*……*an)]>=1/2[in(a1*a2*……*an)]不成立,所以你的结论估计是不正确的啊!
不过用稍微高点的知识,就是凸凹函数,容易证明。
设f(x)=inx(x>1)
f''(x)=-1/x^2<0恒成立。
所以f(x)为(1,+∝)上的凸函数。
所以由凸函数的琴生不等式:
f[(a1+a1+……+an)/n]>=[f(a1)+f(a2)+……+f(an)]/n
也就是
in[(a1+a2+……+an)/n]>=(1/n)[in(a1*a2*……*an)]——(*)
in[(a1+a2+……+an)/n]>=in[n次根号下(a1*a2*……*an)]
去对数。
(a1+a2+……+an)/n>=n次根号下(a1*a2*……*an)
即算术平均数>=几何平均数
至于你推出的结论,在(*)处,运用放缩,当有:
in[(a1+a2+……+an)/n]>=(1/n)[in(a1*a2*……*an)]>=1/2[in(a1*a2*……*an)]
,
显然对于n>2
(1/n)[in(a1*a2*……*an)]>=1/2[in(a1*a2*……*an)]不成立,所以你的结论估计是不正确的啊!
展开全部
题目有问题吧,比如a1=-1,
a2=-2,
a3=3,
n=3
(a1+a2+a3)/n=0<6^(1/3)=(a1a2a3)^(1/n)
如果a1,a2..an>=0
设g(x)=a1+a2+...+an=k,
f(x)=a1a2...an
f(x)最大时,df=mdg
a2a3a4...an=m
a1a3a4...an=m
a1a2a4...an=m
...
a1a2a3...a(n-1)=m
a1+a2+...+an=k
解得a1=a2=...=an=k/n
即a1a2...an<=(k/n)^n
所以(a1a2...an)^(1/n)<=k/n=(a1+a2+...+an)/n
a2=-2,
a3=3,
n=3
(a1+a2+a3)/n=0<6^(1/3)=(a1a2a3)^(1/n)
如果a1,a2..an>=0
设g(x)=a1+a2+...+an=k,
f(x)=a1a2...an
f(x)最大时,df=mdg
a2a3a4...an=m
a1a3a4...an=m
a1a2a4...an=m
...
a1a2a3...a(n-1)=m
a1+a2+...+an=k
解得a1=a2=...=an=k/n
即a1a2...an<=(k/n)^n
所以(a1a2...an)^(1/n)<=k/n=(a1+a2+...+an)/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询