讨论级数 ∑x∧n/n∧s(s>0)的敛散性,包括绝对收敛、条件收敛和发散 40

 我来答
帐号已注销
2020-06-26 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

后项比前项的绝对值的极限=|x| 故收敛半径R=1,|x|<1绝对收敛;

x=1时:s>1绝对收敛,0<s≤1发散;

x=-1, 由于1/n^s单减趋于0,由莱布尼兹判别法,级数条件收敛;

当|a|<1时收敛:这可由根式判别法直接得到;

当|a|>1时收敛:这可由根式判别法直接得到;

当a=1时,这是一个p---级数,即当s>1时收敛,当s≤1 时发散;

当a= - 1时,利用莱布尼茨判别法:即当s>0时收敛,当s≤0时发散;

a(n+1)/a(n)

=(a^(n+1)/(n+1)^s)/(a^n/n^s)

=a/(n+1)→0<1

根据比值判敛法,级数收敛。

扩展资料:

令{}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|-A|<b恒成立,就称数列{}收敛于A(极限为A),即数列{}为收敛数列。

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

参考资料来源:百度百科-收敛

nsjiang1
2013-06-18 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3828万
展开全部
后项比前项的绝对值的极限=|x| 故收敛半径R=1,|x|<1绝对收敛
x=1时:s>1绝对收敛,0<s≤1发散
x=-1, 由于1/n^s单减趋于0,由莱布尼兹判别法,级数条件收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式