已知二次函数f(x)=ax²+bx+4,集合A={x|f(x)=x}
2个回答
展开全部
解:(1)因为A是单元素集合,所以方程f(x)
=
x有且只有一个实数解1。代入可得a
+
b
+
4
=
1,a
+
b
=
-3①,f(x)
=
ax
2
+
bx
+
4
=
x
=>
ax
2
+
(b
–
1)x
+
4
=
0
=>Δ=
(b
–
1)
2
–
16a
=
0②,联立解得b
2
–
2b
+
1
–
16(-3
–
b)
=
0
=>
b
2
+
14b
+
49
=
0
=>
(b
+
7)
2
=
0
=>
b
=
-7
=>
a
=
4
=>
f(x)的解析式为f(x)
=
4x
2
–
7x
+
4;
(2)因为1∈A,所以x
=
1是方程f(x)
=
x的解。代入可得a
+
b
=
-3①,即b
=
-3
–
a,所以f(x)
=
ax
2
+
(-3
–
a)x
+
4
=
a[x
–
(3
+
a)/2a]
2
+
4
–
(a
+
3)
2
/4a,二次函数的对称轴l:x
=
(3
+
a)/2a
=
(1/2)(1
+
3/a),因为a∈[1,2]
=>
1/a
∈[1/2,1]
=>
3/a
∈[3/2,3]
=>
1
+
3/a
∈[5/2,4]
=>
x
=
(1/2)(1
+
3/a)∈[5/4,2],分类讨论:
1)当x∈[5/4,2]时,f(x)min
=
f[(3
+
a)/2a]
=
4
–
(a
+
3)
2
/4a
=
5/2
–
(1/4)(a
+
9/a)
=
5/2
–
a/4
–
9/4a∈[0,7/8];
(当1≤a≤4/3)f(x)max
=
f(5/4)
=
5a/16
+
1/4∈[9/16,2/3],
或者(当4/3≤a≤2)f(2)
=
2a
–
2∈[2/3,2];
2)当x∈[1/2,5/4]时,f(x)在x∈[1/2,5/4)上单调递减,所以f(x)max
=
f(1/2)
=
-a/4
+
5/2∈[2,9/4];f(x)min
=
f(5/4)
=
5a/16
+
1/4∈[9/16,7/8];
综上所述,M
=
f(x)max
=
f(1/2)
=
-a/4
+
5/2,m
=
f(x)min
=
f[(3
+
a)/2a]
=
5/2
–
a/4
–
9/4a,所以g(a)
=
M
–
m
=
9/4a,当a
=
2时,g(a)min
=
9/8
。
=
x有且只有一个实数解1。代入可得a
+
b
+
4
=
1,a
+
b
=
-3①,f(x)
=
ax
2
+
bx
+
4
=
x
=>
ax
2
+
(b
–
1)x
+
4
=
0
=>Δ=
(b
–
1)
2
–
16a
=
0②,联立解得b
2
–
2b
+
1
–
16(-3
–
b)
=
0
=>
b
2
+
14b
+
49
=
0
=>
(b
+
7)
2
=
0
=>
b
=
-7
=>
a
=
4
=>
f(x)的解析式为f(x)
=
4x
2
–
7x
+
4;
(2)因为1∈A,所以x
=
1是方程f(x)
=
x的解。代入可得a
+
b
=
-3①,即b
=
-3
–
a,所以f(x)
=
ax
2
+
(-3
–
a)x
+
4
=
a[x
–
(3
+
a)/2a]
2
+
4
–
(a
+
3)
2
/4a,二次函数的对称轴l:x
=
(3
+
a)/2a
=
(1/2)(1
+
3/a),因为a∈[1,2]
=>
1/a
∈[1/2,1]
=>
3/a
∈[3/2,3]
=>
1
+
3/a
∈[5/2,4]
=>
x
=
(1/2)(1
+
3/a)∈[5/4,2],分类讨论:
1)当x∈[5/4,2]时,f(x)min
=
f[(3
+
a)/2a]
=
4
–
(a
+
3)
2
/4a
=
5/2
–
(1/4)(a
+
9/a)
=
5/2
–
a/4
–
9/4a∈[0,7/8];
(当1≤a≤4/3)f(x)max
=
f(5/4)
=
5a/16
+
1/4∈[9/16,2/3],
或者(当4/3≤a≤2)f(2)
=
2a
–
2∈[2/3,2];
2)当x∈[1/2,5/4]时,f(x)在x∈[1/2,5/4)上单调递减,所以f(x)max
=
f(1/2)
=
-a/4
+
5/2∈[2,9/4];f(x)min
=
f(5/4)
=
5a/16
+
1/4∈[9/16,7/8];
综上所述,M
=
f(x)max
=
f(1/2)
=
-a/4
+
5/2,m
=
f(x)min
=
f[(3
+
a)/2a]
=
5/2
–
a/4
–
9/4a,所以g(a)
=
M
–
m
=
9/4a,当a
=
2时,g(a)min
=
9/8
。
展开全部
f(x)=ax²+x-1+3a(a属于R)在区间
[-1,1]上有零点
即ax²+x-1+3a=0在[-1,1]上有实数解
即a(x²+3)=1-x
即
a=(1-x)/(x²+3)有实数解
令
g(x)=(1-x)/(x²+3)则
a的范围即是g(x)的值域
g(x)=[-x²-3-2x(1-x)]/(x²+3)²
=(x²-2x-3)/(x²+3)²
=(x+1)(x-3)/(x²+3)²
∵-1≤x≤1∴
(x+1)(x-3)
≤0
∴
g(x)≤0
∴g(x)是减函数
∴x=-1
g(x)max=1
[-1,1]上有零点
即ax²+x-1+3a=0在[-1,1]上有实数解
即a(x²+3)=1-x
即
a=(1-x)/(x²+3)有实数解
令
g(x)=(1-x)/(x²+3)则
a的范围即是g(x)的值域
g(x)=[-x²-3-2x(1-x)]/(x²+3)²
=(x²-2x-3)/(x²+3)²
=(x+1)(x-3)/(x²+3)²
∵-1≤x≤1∴
(x+1)(x-3)
≤0
∴
g(x)≤0
∴g(x)是减函数
∴x=-1
g(x)max=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询