xln(1-x)dx定积分 下限0 上限1 .求定积分的值有过程有真相
2个回答
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
总觉得这种瑕积分还是先求出原函数比较方便些.∫
xln(1
-
x)
dx=
∫
ln(1
-
x)
d(x²/2)=
(x²/2)ln(1
-
x)
-
(1/2)∫
x²
*
(-
1)/(1
-
x)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
x²/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
[(x²
-
1)
+
1]/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
[(x
-
1)(x
+
1)
+
1]/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
(x
+
1)
dx
-
(1/2)∫
dx/(x
-
1)=
(x²/2)ln(1
-
x)
-
(1/2)(x²/2
+
x)
-
(1/2)ln|x
-
1|
+
C=
(x²/2)ln(1
-
x)
-
x²/4
-
x/2
-
(1/2)ln|x
-
1|
+
C=
(1/2)(x²
-
1)ln(1
-
x)
-
(x/4)(x
+
2)
+
C∫(0→1)
xln(1
-
x)
dx=
lim(x→1)
[(1/2)(x²
-
1)ln(1
-
x)
-
(x/4)(x
+
2)]
-
0=
0
-
(1/4)(1
+
2)=
-
3/4
xln(1
-
x)
dx=
∫
ln(1
-
x)
d(x²/2)=
(x²/2)ln(1
-
x)
-
(1/2)∫
x²
*
(-
1)/(1
-
x)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
x²/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
[(x²
-
1)
+
1]/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
[(x
-
1)(x
+
1)
+
1]/(x
-
1)
dx=
(x²/2)ln(1
-
x)
-
(1/2)∫
(x
+
1)
dx
-
(1/2)∫
dx/(x
-
1)=
(x²/2)ln(1
-
x)
-
(1/2)(x²/2
+
x)
-
(1/2)ln|x
-
1|
+
C=
(x²/2)ln(1
-
x)
-
x²/4
-
x/2
-
(1/2)ln|x
-
1|
+
C=
(1/2)(x²
-
1)ln(1
-
x)
-
(x/4)(x
+
2)
+
C∫(0→1)
xln(1
-
x)
dx=
lim(x→1)
[(1/2)(x²
-
1)ln(1
-
x)
-
(x/4)(x
+
2)]
-
0=
0
-
(1/4)(1
+
2)=
-
3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询