
x->0
tanx = x +o(x)
ln[ 1+ (2/3)tanx ]=(2/3)x +o(x)
x.ln[ 1+ (2/3)tanx ] =(2/3)x^2 +o(x^2)
e^【x.ln[1+(2/3)tanx] 】=e^[ (2/3)x^2 +o(x^2)] = 1+ (2/3)x^2 +o(x^2)
e^【x.ln[1+(2/3)tanx] 】 -1 =(2/3)x^2 +o(x^2)
[1+(2/3)tanx]^x -1 =e^【x.ln[1+(2/3)tanx] 】-1 =(2/3)x^2 +o(x^2)
lim(x->0) [ (3+2tanx)^x -3^x ] / [ 3(sinx)^2 + x^3. cos(1/x) ]
=lim(x->0) 3^x. { [1+(2/3)tanx]^x -1 } / [ 3(sinx)^2 + x^3. cos(1/x) ]
=lim(x->0) { [1+(2/3)tanx]^x -1 } / [ 3(sinx)^2 + x^3. cos(1/x) ]
=lim(x->0) (2/3)x^2/ [ 3(sinx)^2 + x^3. cos(1/x) ]
分子分母同时除以x^2
=lim(x->0) (2/3)/ [ 3(sinx/x)^2 + x. cos(1/x) ]
=(2/3)/ (3+0)
=2/9