已知向量a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),设f(x)=ab 当x∈[-π/4,π/4]时,求函数f(x)的
展开全部
向量a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),
f(x)=a●b
=(cosx+sinx)(cosx-sinx)+2sinxcosx
=cos²x-sin²x+sin2x
=cos2x+sin2x
=√2(√2/2sin2x+√2/2cos2x)
=√2sin(2x+π/4)
∵x∈[-π/4,π/4]
∴2x∈[-π/2,π/2]
∴2x+π/4∈[-π/4,3π/4]
∴sin(2x+π/4]∈[-√2/2,1]
∴√2sin(2x+π/4]∈[-1,√2]
f(x)最大值为√2,最小值为-1
f(x)=a●b
=(cosx+sinx)(cosx-sinx)+2sinxcosx
=cos²x-sin²x+sin2x
=cos2x+sin2x
=√2(√2/2sin2x+√2/2cos2x)
=√2sin(2x+π/4)
∵x∈[-π/4,π/4]
∴2x∈[-π/2,π/2]
∴2x+π/4∈[-π/4,3π/4]
∴sin(2x+π/4]∈[-√2/2,1]
∴√2sin(2x+π/4]∈[-1,√2]
f(x)最大值为√2,最小值为-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询