初二数学题 求详细解题过程 看图
2014-09-14
展开全部
化简:
[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]
=﹛[(x-1)(x+1)-x(x-2)]/[x(x+1)]﹜÷﹛[x(2x-1)]/(x+1)²﹜
=﹛(x²-1-x+2x)/[x(x+1)]﹜×﹛(x+1)²/[x(2x-1)]﹜
=[(2x-1)/x]×﹛(x+1)/[x(2x-1)]﹜
=(x+1)/x²
∵x²-x-1=0
∴x²=x+1
∴[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]=(x+1)/(x+1)=1
[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]
=﹛[(x-1)(x+1)-x(x-2)]/[x(x+1)]﹜÷﹛[x(2x-1)]/(x+1)²﹜
=﹛(x²-1-x+2x)/[x(x+1)]﹜×﹛(x+1)²/[x(2x-1)]﹜
=[(2x-1)/x]×﹛(x+1)/[x(2x-1)]﹜
=(x+1)/x²
∵x²-x-1=0
∴x²=x+1
∴[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]=(x+1)/(x+1)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询