高中正弦余弦定理主要题型以及做题方法

高中正弦余弦定理主要题型以及做题方法有哪些?... 高中正弦余弦定理主要题型以及做题方法有哪些? 展开
 我来答
文贤仪春晓
2020-03-15 · TA获得超过3715个赞
知道大有可为答主
回答量:3038
采纳率:28%
帮助的人:233万
展开全部
1.根据正弦定理和余弦定理公式解三角形(余弦定理中要注意骄傲的的取值个数)
2.三角形解的个数的讨论:若已知a,b,A,由正弦定理得sinB=(b/a)sinA=m,由此试进一步求三角形时,需结合sinB的取值范围及A+B<180°来讨论:
(1)若m>1时,则不存在这样的角B,故三角形无解;
(2)若m≤1,则在[0°,180°]内存在角B,但此时三角形是否有解还需继续讨论。
①当m=1时,则B=90°,
a.若此时A<90°,则三角形有一解;
b.
.若此时A≥90°,则三角形无解。
②当0<m<1时,满足sinB=m的B为锐角时设为α,B为钝角时设为β。则
a.当A+α>180°时,三角形无解;
b.当A+α<180°时,三角形有解;
c..当A+β<180°时,三角形有两解;
d.当A+β≥180°时,三角形无解。
3.利用正弦定理和余弦定理判断三角形的形状(主要是公式的换算)
4利用正弦定理和余弦定理证明恒等式(主要是公式的换算)
5.求三角形的面积:公式:S△=½ah^a=½absinC=(abc)/4R=½(a+b+c)r=√p(p-a)(p-b)(p-c)
(海伦公式)=½√(
|向量AB|×|向量AC|)^2-(向量AB×向量AC)^2=2RsinAsinBsinC=(a^2sinBsinC)/2sinA
其中r为△ABC内切圆半径,R为△ABC外接圆半径,P=½(a+b+c)
6应用举例:①测量距离
②测量高度
③测量角度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式