2x^3dydz+2y^3dzdx+3(z^2-1)dxdy

计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-y^2(z≥0)的上侧.-π利用高斯公式我解出的答... 计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-y^2(z≥0)的上侧.
-π 利用高斯公式 我解出的答案为0
展开
 我来答
茹翊神谕者

2021-10-30 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1645万
展开全部

简单计算一下即可,答案如图所示

遇沛五兴学
2020-06-05 · TA获得超过1157个赞
知道小有建树答主
回答量:1904
采纳率:100%
帮助的人:11.2万
展开全部

看吧

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式