已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若{a
已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若{an}是等差数列,且...
已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若{an}是等差数列,且首项和公差相等,求证:{bn}是等比数列.(2)若{an}是等差数列,且{bn}是等比数列,求证:anbn=n?2n-1.
展开
1个回答
展开全部
(1){an}是等差数列,且首项和公差相等,设首项和公差为a,数列{an}的通项公式是an=na,宽缓
∵a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2,
∴abn+2abn-1+3abn-2+…+(n-1)ab2+nab1=2n+1-n-2①,
∴abn-1+2abn-2+…+(n-2)ab2+(n-1)ab1=2n-n-1②,
①-②得,
a(bn+bn-1+??+b2+b1)=2n-1,
bn=
×2n-1,数列{bn}是首项为
,公比腊誉为2的等比数列.
(2){an}是等差数列,设首项为a,公差为d,an=a+(n-1)d,
{bn}是等比数列,设首项为b,公比为q,则bn=bqn-1,
bqn-1a1+bqn-2a2+bqn-3a3+…+bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3+…+ban-1=2n-n-1(n≥2),
故(轮巧段2n-n-1)q+ban=2n+1-n-2,
∴an=
×2n+
×n+
,
∴an+1-an=
×2n+
,
∵{an}是等差数列,
∴q=2,d=
,
∴anbn=n?2n-1.
∵a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2,
∴abn+2abn-1+3abn-2+…+(n-1)ab2+nab1=2n+1-n-2①,
∴abn-1+2abn-2+…+(n-2)ab2+(n-1)ab1=2n-n-1②,
①-②得,
a(bn+bn-1+??+b2+b1)=2n-1,
bn=
1 |
a |
1 |
a |
(2){an}是等差数列,设首项为a,公差为d,an=a+(n-1)d,
{bn}是等比数列,设首项为b,公比为q,则bn=bqn-1,
bqn-1a1+bqn-2a2+bqn-3a3+…+bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3+…+ban-1=2n-n-1(n≥2),
故(轮巧段2n-n-1)q+ban=2n+1-n-2,
∴an=
2?q |
b |
q?1 |
b |
q?2 |
b |
∴an+1-an=
2?q |
b |
q?1 |
b |
∵{an}是等差数列,
∴q=2,d=
1 |
b |
∴anbn=n?2n-1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询