已知α为锐角,并且tanα=1/3,求2sinα-cosα/2sinα+cosα的值。
2个回答
2013-06-21
展开全部
已知α为锐角,且tanα=1/2
则cosα=2/√5
(sin2α*cosα-sinα)/sin2α*cos2α
=(2sinα*cosα*cosα-sinα)/sin2α*cos2α
=[sinα(2cosα*cosα-1)]/sin2αcos2α
=(sinα*cos2α)/sin2α*cos2α
=sinα/sin2α
=sinα/2sinα*cosα
=1/2cosα
=√5/4答案补充 Sin2A=2SinA�6�1CosA
Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1
则cosα=2/√5
(sin2α*cosα-sinα)/sin2α*cos2α
=(2sinα*cosα*cosα-sinα)/sin2α*cos2α
=[sinα(2cosα*cosα-1)]/sin2αcos2α
=(sinα*cos2α)/sin2α*cos2α
=sinα/sin2α
=sinα/2sinα*cosα
=1/2cosα
=√5/4答案补充 Sin2A=2SinA�6�1CosA
Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-06-21
展开全部
(2sina-cosa)/(2sina+cosa);分子分母同除以cosa
=(2tana-1)/(2tana+1)
=(2/3-1)/(2/3+1)
=-(1/3)/(5/3)
=-1/5
=(2tana-1)/(2tana+1)
=(2/3-1)/(2/3+1)
=-(1/3)/(5/3)
=-1/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询