已知数列{an}的前n项和为Sn,且Sn=2an+n-4 (1)求证:数列{an}通项公式(2)求S4/a4的值 10
2个回答
展开全部
由Sn = 2an + n - 4知 Sn-1 = 2an-1 + n - 5
两式相减得,an = 2an - 2an-1 + 1
an = 2an-1 - 1 ===》 an - 1 = 2(an-1 - 1) 所以{an -1}是公比为2的等比数列 a1 = 3
所以通项式为 an - 1 = 2^(n-1)(a1-1)=2^n
所以 an = 2^n + 1
S4 = 2a4 + 4 - 1 = 2x17 + 3 = 37
a4 = 17
S4/a4 = 37/17
两式相减得,an = 2an - 2an-1 + 1
an = 2an-1 - 1 ===》 an - 1 = 2(an-1 - 1) 所以{an -1}是公比为2的等比数列 a1 = 3
所以通项式为 an - 1 = 2^(n-1)(a1-1)=2^n
所以 an = 2^n + 1
S4 = 2a4 + 4 - 1 = 2x17 + 3 = 37
a4 = 17
S4/a4 = 37/17
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询