锐角三角形ABC中,a,b,c为角ABC所对的边,且(b-2c)cosA=a-2acos^2(B/2)
展开全部
(b-2c)cosA=a-2acos^2(B/2)
则(sinB-2sinC)cosA=sinA-sinA(1+cosB)
则sinBcosA-2sinCcosA=sinA-sinA-sinAcosB
sinBcosA+cosBsinA-2sinCcosA=0
sin(B+A)=2sinCcosA
sinC=2sinCcosA
cosA=1/2
A=60°
a=√3
由余弦定理得a^2=b^2+c^2-2bccosA
=b^2+c^2-bc>=2bc-bc=bc
即bc<=a^2=3
而(b+c)^2=b^2+c^2+2bc=a^2+3bc<=12
所以√3<b+c<=2√3
不懂可以追问,谢谢!
则(sinB-2sinC)cosA=sinA-sinA(1+cosB)
则sinBcosA-2sinCcosA=sinA-sinA-sinAcosB
sinBcosA+cosBsinA-2sinCcosA=0
sin(B+A)=2sinCcosA
sinC=2sinCcosA
cosA=1/2
A=60°
a=√3
由余弦定理得a^2=b^2+c^2-2bccosA
=b^2+c^2-bc>=2bc-bc=bc
即bc<=a^2=3
而(b+c)^2=b^2+c^2+2bc=a^2+3bc<=12
所以√3<b+c<=2√3
不懂可以追问,谢谢!
展开全部
(b-2c)cosA=a-2acos^2(B/2)
(b-2c)cosA=a-a(1+cosB)=-acosB
由a/sinA=b/sinB=c/sinC=R,两边除R,则:
sinBcosA-2sinCcosA=-sinAcosB
sin(B+A)=2sinCcosA
由C=π-(B+A),则sinC=sin(B+A)
sinC=2sinCcosA
cosA=1/2
A=π/3
a/sinA=b/sinB=c/sinC=(b+c)/(sinB+sinC)=√3/(√3/2)=2
b+c=2(sinB+sinC)=2[sinB+sin(2π/3-B)]=4sin(π/3)cos(B-π/3)=2√3cos(B-π/3)
0<B<2π/3
当B=π/3时,b+c最大值2√3
当B->0或B->2π/3时,b+c最小值√3
b+c的取值范围为(√3,2√3]
(b-2c)cosA=a-a(1+cosB)=-acosB
由a/sinA=b/sinB=c/sinC=R,两边除R,则:
sinBcosA-2sinCcosA=-sinAcosB
sin(B+A)=2sinCcosA
由C=π-(B+A),则sinC=sin(B+A)
sinC=2sinCcosA
cosA=1/2
A=π/3
a/sinA=b/sinB=c/sinC=(b+c)/(sinB+sinC)=√3/(√3/2)=2
b+c=2(sinB+sinC)=2[sinB+sin(2π/3-B)]=4sin(π/3)cos(B-π/3)=2√3cos(B-π/3)
0<B<2π/3
当B=π/3时,b+c最大值2√3
当B->0或B->2π/3时,b+c最小值√3
b+c的取值范围为(√3,2√3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |