(2014?长春)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,-1),且对称轴为直线x=2,点P、Q均
(2014?长春)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,-1),且对称轴为直线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧...
(2014?长春)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,-1),且对称轴为直线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为m.(1)求这条抛物线所对应的函数关系式;(2)求点Q的坐标(用含m的式子表示);(3)请探究PA+QB=AB是否成立,并说明理由;(4)抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,若其对称轴把四边形PAQB分成面积比为1:5的两部分,直接写出此时m的值.
展开
1个回答
展开全部
(1)∵抛物线y=x2+bx+c经过点(1,-1),且对称轴为在线x=2,
∴
,
解得
.
∴这条抛物线所对应的函数关系式y=x2-4x+2;
(2)∵抛物线上点P的横坐标为m,
∴P(m,m2-4m+2),
∴PA=m-2,
QB=PA+1=m-2+1=m-1,
∴点Q的横坐标为2-(m-1)=3-m,
点Q的纵坐标为(3-m)2-4(3-m)+2=m2-2m-1,
∴点Q的坐标为(3-m,m2-2m-1);
(3)PA+QB=AB成立.
理由如下:∵P(m,m2-4m+2),Q(3-m,m2-2m-1),
∴A(2,m2-4m+2),B(2,m2-2m-1),
∴AB=(m2-2m-1)-(m2-4m+2)=2m-3,
又∵PA=m-2,QB=m-1,
∴PA+QB=m-2+m-1=2m-3,
∴PA+QB=AB;
(4)∵抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,
∴抛物线y=a1x2+b1x+c1的对称轴为QB的垂直平分线,
∵对称轴把四边形PAQB分成面积为1:5的两部分,
∴
×
×
=
×
(2m-3)×(2m-3),
整理得,(2m-3)(m-3)=0,
∵点P位于对称轴右侧,
∴m>2,
∴2m-3≠0,
∴m-3=0,
解得m=3.
∴
|
解得
|
∴这条抛物线所对应的函数关系式y=x2-4x+2;
(2)∵抛物线上点P的横坐标为m,
∴P(m,m2-4m+2),
∴PA=m-2,
QB=PA+1=m-2+1=m-1,
∴点Q的横坐标为2-(m-1)=3-m,
点Q的纵坐标为(3-m)2-4(3-m)+2=m2-2m-1,
∴点Q的坐标为(3-m,m2-2m-1);
(3)PA+QB=AB成立.
理由如下:∵P(m,m2-4m+2),Q(3-m,m2-2m-1),
∴A(2,m2-4m+2),B(2,m2-2m-1),
∴AB=(m2-2m-1)-(m2-4m+2)=2m-3,
又∵PA=m-2,QB=m-1,
∴PA+QB=m-2+m-1=2m-3,
∴PA+QB=AB;
(4)∵抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,
∴抛物线y=a1x2+b1x+c1的对称轴为QB的垂直平分线,
∵对称轴把四边形PAQB分成面积为1:5的两部分,
∴
1 |
2 |
m?1 |
2 |
2m?3 |
2 |
1 |
1+5 |
1 |
2 |
整理得,(2m-3)(m-3)=0,
∵点P位于对称轴右侧,
∴m>2,
∴2m-3≠0,
∴m-3=0,
解得m=3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询