椭圆有什么性质?

比如说:过焦点的直线与椭圆相交,则端点坐标积恒定。以焦点弦为直径的圆与准线相交。... 比如说:过焦点的直线与椭圆相交,则端点坐标积恒定。
以焦点弦为直径的圆与准线相交。
展开
颛孙思莲阎妞
2019-06-17 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:628万
展开全部
优美椭圆:离心率e为黄金分割比
(1)短轴两端点,长轴的一端点及其对侧的焦点共圆;
(2)焦点与相应准线之间距离等于长半轴长。
圭英冷古
2020-02-24 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:603万
展开全部
1.椭圆的简单性质
  以方程
为例:
  (1)范围:由方程可得|x|≤a,|y|≤b,因此椭圆位于直线x=±a,y=±b所围成的矩形里。
  (2)对称性:椭圆既是轴对称图形,也是中心对称图形,它有两根对称轴,一个对称中心,一般地对于曲线f(x,y)=0,若以-y代y方程不变,则曲线关于x轴对称,若以-x代x方程不变,则曲线关于y轴对称;若同时以-x代x,以-y代y方程不变,那么曲线关于原点对称,应结合点P(x,y)分别关于x轴、y轴、原点的对称点的坐标来理解和记忆。
  (3)顶点:共有四个,即
,它们就是椭圆与坐标轴的交点,画椭圆时,可先画出这四个顶点,也就画出了椭圆的大致形状。
  (4)离心率:
,在椭圆中,∵a>c>0,∴0<e<1。
  若设a不变,∵
,易见,e越大,b越小,椭圆越扁;e越小,b越大,椭圆越圆,因此,离心率反映了椭圆的扁平程度。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mJ_45
2008-06-07 · TA获得超过228个赞
知道答主
回答量:97
采纳率:0%
帮助的人:54万
展开全部
椭圆
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1:平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2:平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。如图,有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):

如图,将两个半径与圆柱半径相等的半球从圆柱两端相中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cqy0727
2008-06-07 · TA获得超过474个赞
知道小有建树答主
回答量:320
采纳率:0%
帮助的人:0
展开全部
椭圆
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1:平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2:平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。如图,有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):

如图,将两个半径与圆柱半径相等的半球从圆柱两端相中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1

其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)

关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截缐论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运\行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式