如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M, 20
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N。(1)求证:CM=CN...
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N。
(1)求证:CM=CN 展开
(1)求证:CM=CN 展开
11个回答
展开全部
第一问:证明:由折叠可知,<CMN=<NMCCN//BM
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
所以CM=CN
第二问:解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴SCMN/SCDN=1/2MD*DH/(1/2DN*NH)=MD/DN=3,
N
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=√(CN²-DN²)=2√2x,
∴HN=2√2x,
在Rt△MNH中,MN=√MH²+HN²=2√3x,
∴MN/DN=2√3x/x=2√3
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
所以CM=CN
第二问:解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴SCMN/SCDN=1/2MD*DH/(1/2DN*NH)=MD/DN=3,
N
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=√(CN²-DN²)=2√2x,
∴HN=2√2x,
在Rt△MNH中,MN=√MH²+HN²=2√3x,
∴MN/DN=2√3x/x=2√3
展开全部
1)证明:由折叠的性质可得:∠ANM=∠CNM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;
(2)解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=
∴HN=2
在Rt△MNH中,MN=
∴
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:由折叠的性质可得:∠ANM=∠CNM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;
(2)解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴===3,
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC==2x,
∴HN=2x,
在Rt△MNH中,MN==2x,
∴==2.
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;
(2)解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴===3,
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC==2x,
∴HN=2x,
在Rt△MNH中,MN==2x,
∴==2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:由折叠可知,<CMN=<NMC
CN//BM
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
CM=CN
总结,有平等线和角平分线出现,一定的等腰三角形存在
CN//BM
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
CM=CN
总结,有平等线和角平分线出现,一定的等腰三角形存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一问:证明:由折叠可知,<CMN=<NMCCN//BM
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
所以CM=CN
第二问:解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴SCMN/SCDN=1/2MD*DH/(1/2DN*NH)=MD/DN=3,
N
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=√(CN²-DN²)=2√2x,
∴HN=2√2x,
在Rt△MNH中,MN=√MH²+HN²=2√3x,
∴MN/DN=2√3x/x=2√3,
<NMC=<CNM
因,<CMN=<NMC
<NMC=<NMC
在三角形CMN中,<NMC=<NMC
所以CM=CN
第二问:解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴SCMN/SCDN=1/2MD*DH/(1/2DN*NH)=MD/DN=3,
N
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC=√(CN²-DN²)=2√2x,
∴HN=2√2x,
在Rt△MNH中,MN=√MH²+HN²=2√3x,
∴MN/DN=2√3x/x=2√3,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询