阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线
阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线...
阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.
展开
1个回答
展开全部
解:(1)设直线l的函数表达式为y=kx+b,
∵直线l与直线y=-2x-1平行,∴k=-2,
∵直线l过点(1,4),
∴-2+b=4,
∴b=6.
∴直线l的函数表达式为y=-2x+6.
直线l的图象如图.
(2)∵直线l分别与y轴、x轴交于点A、B,
∴点A、B的坐标分别为(0,6)、(3,0).
∵l∥m,
∴直线m为y=-2x+t.令y=0,解得x=
,
∴C点的坐标为(
,0).
∵t>0,∴
>0.
∴C点在x轴的正半轴上.
当C点在B点的左侧时,S=
×(3-
)×6=9-
;
当C点在B点的右侧时,S=
×(
-3)×6=
-9.
∴△ABC的面积S关于t的函数表达式为S=
.
∵直线l与直线y=-2x-1平行,∴k=-2,
∵直线l过点(1,4),
∴-2+b=4,
∴b=6.
∴直线l的函数表达式为y=-2x+6.
直线l的图象如图.
(2)∵直线l分别与y轴、x轴交于点A、B,
∴点A、B的坐标分别为(0,6)、(3,0).
∵l∥m,
∴直线m为y=-2x+t.令y=0,解得x=
t |
2 |
∴C点的坐标为(
t |
2 |
∵t>0,∴
t |
2 |
∴C点在x轴的正半轴上.
当C点在B点的左侧时,S=
1 |
2 |
t |
2 |
3t |
2 |
当C点在B点的右侧时,S=
1 |
2 |
t |
2 |
3t |
2 |
∴△ABC的面积S关于t的函数表达式为S=
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询