数列的问题?
展开全部
因为是等比数列,由 (A5)² = A10 可以得到:
(A5)² = A5 * q^(10 - 5) = A5 * q^5
所以,A5 = q^5
对于等比数列有:
An = A1 * q^(n-1)
既然 A5 = q^5 = q * q^4 = A1 * q^4,所以:
A1 = q
那么:
An = q^n
又因为:
2(An + An+2) = 5An+1
2[q^n + q^(n+2)] = 5q^(n+1)
方程两边同除以 q^n,整理得到:
2(1 + q²) = 5q
2q² - 5q + 2 = (2q - 1)(q - 2) = 0
所以:q = 2 或 q = 1/2 (舍去,因为是递增数列,q > 1)
因此,An = 2^n
(A5)² = A5 * q^(10 - 5) = A5 * q^5
所以,A5 = q^5
对于等比数列有:
An = A1 * q^(n-1)
既然 A5 = q^5 = q * q^4 = A1 * q^4,所以:
A1 = q
那么:
An = q^n
又因为:
2(An + An+2) = 5An+1
2[q^n + q^(n+2)] = 5q^(n+1)
方程两边同除以 q^n,整理得到:
2(1 + q²) = 5q
2q² - 5q + 2 = (2q - 1)(q - 2) = 0
所以:q = 2 或 q = 1/2 (舍去,因为是递增数列,q > 1)
因此,An = 2^n
更多追问追答
追问
(A5)² = A5 * q^(10 - 5) = 这是怎么来的 10-5??
追答
这是因为:
q = A10/A9
q = A9/A8
q = A8/A7
q = A7/A6
q = A6/A5
这些等式两边同时相乘,可以得到:
q^5 = A10/A5
所以,A10 = A5 * q^5
也就是说,A10 与 A5 相差 10 - 5 = 5 个 q 的倍数。
展开全部
(1)解:
∵在单调递增数列{a[n]}中,a[2n-1],a[2n],a[2n+1]成等差数列,n=1,2,3,...
∴2a[2n]=a[2n-1]+a[2n+1]
∵在单调递增数列{a[n]}中,a[2n],a[2n+1],a[2n+2]成等比列,n=1,2,3,...
∴a[2n+1]^2=a[2n]a[2n+2]
∵a[1]=1,a[2]=2
∴2a[2]=a[1]+a[3],a[3]=3
a[3]^2=a[2]a[4],a[4]=9/2
2a[4]=a[3]+a[5],a[5]=6
a[5]^2=a[4]a[6],a[6]=8
(2)解:
设:{x[n]}为数列{a[n]}的增幅数列
即:x[n]=(a[2n+1]-a[2n-1])/2
有:x[n+1]=(a[2n+3]-a[2n+1]/2
∵2a[2n]=a[2n-1]+a[2n+1]
∴a[2n+1]-a[2n]=a[2n]-a[2n-1]
∵a[2n+1]-a[2n-1]=(a[2n+1]-a[2n])+(a[2n]-a[2n-1])=2(a[2n+1]-a[2n])=2x[n]
【1】
∴a[2n+1]-a[2n]=a[2n]-a[2n-1]=x[n]
也有:a[2n+3]-a[2n+2]=a[2n+2]-a[2n+1]=x[n+1]
∵a[2n+1]^2=a[2n]a[2n+2]
∴(a[2n]+x[n])^2=a[2n](a[2n]+x[n]+x[n+1])
a[2n]^2+2x[n]a[2n]+x[n]^2=a[2n]^2+a[2n]x[n]+a[2n]x[n+1]
x[n]a[2n]+x[n]^2=x[n+1]a[2n]
∴x[n+1]-x[n]=x[n]^2/a[2n]
【2】
同样:
∵a[2n+1]^2=a[2n]a[2n+2]
∴(a[2n+2]-x[n+1])^2=(a[2n+2]-x[n+1]-x[n])a[2n+2]
a[2n+2]^2-2x[n+1]a[2n+2]+x[n+1]^2=a[2n+2]^2-x[n+1]a[2n+2]-x[n]a[2n+2]
-x[n+1]a[2n+2]+x[n+1]^2=-x[n]a[2n+2]
∴x[n+1]-x[n]=x[n+1]^2/a[2n+2]
【3】
【3】式用n-1代替n,有:x[n]-x[n-1]=x[n]^2/a[2n]
【4】
比较【2】、【4】,有:x[n+1]-x[n]=x[n]-x[n-1]
∵x[1]=(a[3]-a[1])/2=1,x[2]=(a[5]-a[3])/2=3/2
∴增幅数列{x[n]}是首项为1,公差为x[2]-x[1]=1/2的等差数列
∵由【1】式知:a[2n+1]-a[2n-1]=2(a[2n+1]-a[2n])=2x[n]
∴数列{a[n]}每两个奇数间的增幅项同,增幅的初始值为1,公差为1/2
∴有初步的递推公式:a[n+1]=a[n]+1+(1/2)INT((n-1)/2)
上式中INT((n-1)/2)为取整函数,使得n为1,2时,值为0;n为3,4时,值为1;......
∵递推公式中含取整函数,不利于进一步求数列{a[n]}的通项公式
∴有改进的递推公式:a[n+1]=a[n]+1+(1/2){[n+(1-(-1)^n)/2]/2-1}
其中{[n+(1-(-1)^n)/2]/2-1}和INT((n-1)/2功能完全一致
化简后得到正式的递推公式:a[n+1]=a[n]+(2n-(-1)^n+5)/8
∵8(a[n+1]-a[n])=2n-(-1)^n+5
∴8(a[n]-a[n-1])=2(n-1)-(-1)^(n-1)+5
......
8(a[3]-a[2])=2(2)-(-1)^2+5
8(a[2]-a[1])=2(1)-(-1)^1+5
将上面各式叠加,得:
8(a[n+1]-a[1])=n(n+1)+[1-(-1)^n]/(1+1)+5n
∴用n-1代替n,有:
8(a[n]-1)=(n-1)n+[1-(-1)^(n-1)]/2+5(n-1)
8a[n]=n^2+4n+4+[1-(-1)^(n-1)]/2-1
8a[n]=(n+2)^2-1/2-(-1)^(n-1)/2
即:a[n]={(n+2)^2-[1-(-1)^n]/2}/8
(3)证明:
∵当n为偶数时:1/a[n]=8/(n+2)^2
当n为奇数时:1/a[n]=8/[(n+2)^2-1]
∴S[n]=8/[(1+2)^2-1]+8/(2+2)^2+...+8/{(n+2)^2-[1-(-1)^n]/2}
<8/[3^2-1]+8/[4^2-1]+...+8/((n+2)^2-1)
=8{1/[(3-1)(3+1)]+1/[(4-1)(4+1)]+...+1/[(n+1)(n+3)]}
=4{1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)+1/(n+1)-1/(n+3)}
=4{1/2+1/3-1/(n+2)-1/(n+3)}
=4{1/2+1/3+1/6-1/6+1/(n+2)-2/(n+2)-1/(n+3)}
=4[1-2/(n+2)]+4[1/(n+2)-1/(n+3)-1/6]
=4n/(n+2)+4[1/(n+2)-1/(n+3)-1/6]
∵4[1/(n+2)-1/(n+3)-1/6]
=4[6(n+3)-6(n+2)-(n+2)(n+3)]/[6(n+2)(n+3)]
=2(6n+18-6n-12-n^2-5n-6)/[3(n+2)(n+3)]
=-2n(n+5n)/[3(n+2)(n+3)]
<0
∴S[n]<4n/(n+2)+4[1/(n+2)-1/(n+3)-1/6]<4n/(n+2)
∵在单调递增数列{a[n]}中,a[2n-1],a[2n],a[2n+1]成等差数列,n=1,2,3,...
∴2a[2n]=a[2n-1]+a[2n+1]
∵在单调递增数列{a[n]}中,a[2n],a[2n+1],a[2n+2]成等比列,n=1,2,3,...
∴a[2n+1]^2=a[2n]a[2n+2]
∵a[1]=1,a[2]=2
∴2a[2]=a[1]+a[3],a[3]=3
a[3]^2=a[2]a[4],a[4]=9/2
2a[4]=a[3]+a[5],a[5]=6
a[5]^2=a[4]a[6],a[6]=8
(2)解:
设:{x[n]}为数列{a[n]}的增幅数列
即:x[n]=(a[2n+1]-a[2n-1])/2
有:x[n+1]=(a[2n+3]-a[2n+1]/2
∵2a[2n]=a[2n-1]+a[2n+1]
∴a[2n+1]-a[2n]=a[2n]-a[2n-1]
∵a[2n+1]-a[2n-1]=(a[2n+1]-a[2n])+(a[2n]-a[2n-1])=2(a[2n+1]-a[2n])=2x[n]
【1】
∴a[2n+1]-a[2n]=a[2n]-a[2n-1]=x[n]
也有:a[2n+3]-a[2n+2]=a[2n+2]-a[2n+1]=x[n+1]
∵a[2n+1]^2=a[2n]a[2n+2]
∴(a[2n]+x[n])^2=a[2n](a[2n]+x[n]+x[n+1])
a[2n]^2+2x[n]a[2n]+x[n]^2=a[2n]^2+a[2n]x[n]+a[2n]x[n+1]
x[n]a[2n]+x[n]^2=x[n+1]a[2n]
∴x[n+1]-x[n]=x[n]^2/a[2n]
【2】
同样:
∵a[2n+1]^2=a[2n]a[2n+2]
∴(a[2n+2]-x[n+1])^2=(a[2n+2]-x[n+1]-x[n])a[2n+2]
a[2n+2]^2-2x[n+1]a[2n+2]+x[n+1]^2=a[2n+2]^2-x[n+1]a[2n+2]-x[n]a[2n+2]
-x[n+1]a[2n+2]+x[n+1]^2=-x[n]a[2n+2]
∴x[n+1]-x[n]=x[n+1]^2/a[2n+2]
【3】
【3】式用n-1代替n,有:x[n]-x[n-1]=x[n]^2/a[2n]
【4】
比较【2】、【4】,有:x[n+1]-x[n]=x[n]-x[n-1]
∵x[1]=(a[3]-a[1])/2=1,x[2]=(a[5]-a[3])/2=3/2
∴增幅数列{x[n]}是首项为1,公差为x[2]-x[1]=1/2的等差数列
∵由【1】式知:a[2n+1]-a[2n-1]=2(a[2n+1]-a[2n])=2x[n]
∴数列{a[n]}每两个奇数间的增幅项同,增幅的初始值为1,公差为1/2
∴有初步的递推公式:a[n+1]=a[n]+1+(1/2)INT((n-1)/2)
上式中INT((n-1)/2)为取整函数,使得n为1,2时,值为0;n为3,4时,值为1;......
∵递推公式中含取整函数,不利于进一步求数列{a[n]}的通项公式
∴有改进的递推公式:a[n+1]=a[n]+1+(1/2){[n+(1-(-1)^n)/2]/2-1}
其中{[n+(1-(-1)^n)/2]/2-1}和INT((n-1)/2功能完全一致
化简后得到正式的递推公式:a[n+1]=a[n]+(2n-(-1)^n+5)/8
∵8(a[n+1]-a[n])=2n-(-1)^n+5
∴8(a[n]-a[n-1])=2(n-1)-(-1)^(n-1)+5
......
8(a[3]-a[2])=2(2)-(-1)^2+5
8(a[2]-a[1])=2(1)-(-1)^1+5
将上面各式叠加,得:
8(a[n+1]-a[1])=n(n+1)+[1-(-1)^n]/(1+1)+5n
∴用n-1代替n,有:
8(a[n]-1)=(n-1)n+[1-(-1)^(n-1)]/2+5(n-1)
8a[n]=n^2+4n+4+[1-(-1)^(n-1)]/2-1
8a[n]=(n+2)^2-1/2-(-1)^(n-1)/2
即:a[n]={(n+2)^2-[1-(-1)^n]/2}/8
(3)证明:
∵当n为偶数时:1/a[n]=8/(n+2)^2
当n为奇数时:1/a[n]=8/[(n+2)^2-1]
∴S[n]=8/[(1+2)^2-1]+8/(2+2)^2+...+8/{(n+2)^2-[1-(-1)^n]/2}
<8/[3^2-1]+8/[4^2-1]+...+8/((n+2)^2-1)
=8{1/[(3-1)(3+1)]+1/[(4-1)(4+1)]+...+1/[(n+1)(n+3)]}
=4{1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)+1/(n+1)-1/(n+3)}
=4{1/2+1/3-1/(n+2)-1/(n+3)}
=4{1/2+1/3+1/6-1/6+1/(n+2)-2/(n+2)-1/(n+3)}
=4[1-2/(n+2)]+4[1/(n+2)-1/(n+3)-1/6]
=4n/(n+2)+4[1/(n+2)-1/(n+3)-1/6]
∵4[1/(n+2)-1/(n+3)-1/6]
=4[6(n+3)-6(n+2)-(n+2)(n+3)]/[6(n+2)(n+3)]
=2(6n+18-6n-12-n^2-5n-6)/[3(n+2)(n+3)]
=-2n(n+5n)/[3(n+2)(n+3)]
<0
∴S[n]<4n/(n+2)+4[1/(n+2)-1/(n+3)-1/6]<4n/(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询