1/√(1-x^2)的不定积分是什么?

 我来答
爱生活uXy
高能答主

2021-11-18 · 有什么不懂的尽管问我
知道小有建树答主
回答量:748
采纳率:100%
帮助的人:14.5万
展开全部

∫dx/√(1-x^2)=arcsinx+C这是常用积分。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式