解向量的秩为什么是n-r?
1个回答
展开全部
根据秩-零定理,Ax=0的解空间维数是n-r(A)维。
或通过行初等变换把A化成行阶梯型。
x1a1+x2a2+……+xrar+x(r+1)a(r+1)+……+xnan=0。
那接下来便是设定a1,a2,……,ar是极大无关向量组,则。
x1a1+x2a2+……+xrar=-x(r+1)a(r+1)-……-xnan。
则若x(r+1),x(r+2),……,xn确定后,左边x1,x2,……,xr也确定了。
所以这个x维数就是n-r。
基本原理:
解向量是线性方程组的一个解。因为一组解在空间几何里可以表示为一个向量回,所以叫答做解向量。解向量在矩阵和线性方程组中是常用概念。
如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。
因为一组解在空间几何里可以表示为一个向量,所以叫做解向量。解向量在矩阵和线性方程组中是常用概念。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询