设Z=f(x,y)是方程F(x/z,y/z)=0所确定的隐函数,F(x,y)具有连续偏导数.求dz
解题过程如下图:
扩展资料
在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f(x,y) 的变化率。
偏导数的表示符号为:∂。
偏导数反映的是函数沿坐标轴正方向的变化率。
求法
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
解得:∂z/∂x=zF1/(xF1+yF2)
F(x/z,y/z)=0两边对y求导数得:F1(-x∂z/∂y)/z^2)+F2(z-y∂z/∂y)/z^2)=0
解得:∂z/∂y=zF2/(xF1+yF2)
dz=∂z/∂xdx+∂z/∂ydy=z(F1dx+F2dy)./(xF1+yF2)..