证明cosX导数为-sinX

 我来答
机器1718
2022-06-24 · TA获得超过6874个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:165万
展开全部
此题太easy!
(1)利用导数的定义:
[cos(x)]'=lim{[cos(x+h)-cos(x)]/h}
注意:极限过程是h→0
(2)利用三角公式中的和差化积公式:
[cos(x)]'=lim{[cos(x+h)-cos(x)]/h}
=lim{(1/h)*[-2sin(x+h/2)*sin(h/2)]}
=lim{-sin(x+h/2)*[sin(h/2)/(h/2)]}
(3)在高数极限一章我们已经熟知的重要极限:
lim[sin(x)/x]=1(极限过程是x→0)
(4)[cos(x)]'=-sin(x),得证.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式