极限中为什么e的x次方-1等价于x?
1个回答
展开全部
如图:
lim[x→0] x/(e^x - 1):令e^x - 1 = u,则x→0时,u→0,x=ln(u+1)=lim[u→0] ln(u+1)/u=lim[u→0] (1/u)ln(u+1)=lim[u→0] ln(u+1)^(1/u)=lne=1。
因此当x→0时,e^x - 1与x是等价无穷小。等价无穷小在乘除法中可互相替换。
介绍
y等于e的x次方是一种指数函数,其图像是单调递增,x∈R,y>0,与y轴相交于(0,1)点,图像位于X轴上方,第二象限无限接近X轴。
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询