怎么判断函数关于y=x对称?
2个回答
展开全部
偶函数是关于y轴对称。主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数;f(-x)=f(x)的是偶函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
表示方法
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来。
引用fzhy649496574的回答:
偶函数是关于y轴对称。主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数;f(-x)=f(x)的是偶函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
表示方法
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来。
偶函数是关于y轴对称。主要是根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数;f(-x)=f(x)的是偶函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
表示方法
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来。
展开全部
上面的那个回答不看问题的都,我个人觉得,可以通过先找关于y=x的对称点,比如任意一个点(a,b),易知它关于y=x的对称点是(b,a),然后把这两个坐标分别代入曲线方程,如果代入后一样,说明关于y=x对称,不一样就不关于x轴对称。
举例说明,例如一个关于y=x对称的圆,(x-3)²+(y-3)²=r²,把(a,b)代入得到(a-3)²+(b-3)²=r²,把(b,a)代也是这个式子;而一个椭圆x²/4+y²/3=1显然是不关于y=x对称的,把(a,b)代入是a²/4+b²/3=1,把(b,a)代入是b²/4+a²/3=1,两个式子不相等,也就验证了我的猜想。
举例说明,例如一个关于y=x对称的圆,(x-3)²+(y-3)²=r²,把(a,b)代入得到(a-3)²+(b-3)²=r²,把(b,a)代也是这个式子;而一个椭圆x²/4+y²/3=1显然是不关于y=x对称的,把(a,b)代入是a²/4+b²/3=1,把(b,a)代入是b²/4+a²/3=1,两个式子不相等,也就验证了我的猜想。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询