不可逆矩阵的行列式等于0
1个回答
展开全部
假如不可逆矩阵A的行列式不为0,那么可以求得B=A*/|A|,使得BA=E且AB=E,和A不可逆矛盾所以可逆矩阵的行列式为0。
扩展资料
证明:
A的行列式不等于0,而|E|=1,|P|,|Q|不等于0,所以|A|不等于0,A可逆。
A可逆充要条件是|A|不等于0.这里P,Q都是可逆的`,所以A=P-1Q-1,A-1=QP。
因为A的行列式等于它的所有特征值的乘积。
所以A可逆|A|≠0A的特征值都不等于0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询