具有特解y1=e-x,y2=2xe-x,y3=3ex的3阶常系数齐次线性微分方程是( )?
展开全部
解题思路:由特解的形式,确定特征方程,进而得到原微分方程的形式.
由已知条件可知,e-x,xe-x,ex是所求微分方程的三个线性无关的解,
故其特征方程的根为 λ1,2=-1,λ3=1,
特征方程为 (λ+1)2(λ-1)=λ3+λ2-λ-1.
所以原微分方程为
y′′′+y″-y′-y=0.
故选 B.
,3,具有特解y 1=e -x,y 2=2xe -x,y 3=3e x的3阶常系数齐次线性微分方程是( )
A. y′′′-y″-y′+y=0
B. y′′′+y″-y′-y=0
C. y′′′-6y″+11y′-6y=0
D. y′′′-2y″-y′+2y=0
由已知条件可知,e-x,xe-x,ex是所求微分方程的三个线性无关的解,
故其特征方程的根为 λ1,2=-1,λ3=1,
特征方程为 (λ+1)2(λ-1)=λ3+λ2-λ-1.
所以原微分方程为
y′′′+y″-y′-y=0.
故选 B.
,3,具有特解y 1=e -x,y 2=2xe -x,y 3=3e x的3阶常系数齐次线性微分方程是( )
A. y′′′-y″-y′+y=0
B. y′′′+y″-y′-y=0
C. y′′′-6y″+11y′-6y=0
D. y′′′-2y″-y′+2y=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询