2个回答
推荐于2016-08-27
展开全部
应该有条件是0<x<a.
[1/x^2+1/(a-x)^2]•a^2
=[1/x^2+1/(a-x)^2]•[x+(a-x)]^2
=[1/x^2+1/(a-x)^2]•[x^2+2x(a-x)+(a-x)^2]
=1+2x(a-x)/x^2+(a-x)^2/x^2+ x^2/(a-x)^2+2x(a-x) /(a-x)^2+1
=1+2(a-x)/x+(a-x)^2/x^2+ x^2/(a-x)^2+2 x /(a-x) +1
=2+[2(a-x)/x+2 x /(a-x) ]+[(a-x)^2/x^2+ x^2/(a-x)^2]
≥2+2√[2(a-x)/x•2 x /(a-x) ]+ 2√[(a-x)^2/x^2•x^2/(a-x)^2]
=2+4+2=8,
∴1/x^2+1/(a-x)^2≥8/ a^2,
即y=1/x^2+1/(a-x)^2的最小值是8/ a^2,
[1/x^2+1/(a-x)^2]•a^2
=[1/x^2+1/(a-x)^2]•[x+(a-x)]^2
=[1/x^2+1/(a-x)^2]•[x^2+2x(a-x)+(a-x)^2]
=1+2x(a-x)/x^2+(a-x)^2/x^2+ x^2/(a-x)^2+2x(a-x) /(a-x)^2+1
=1+2(a-x)/x+(a-x)^2/x^2+ x^2/(a-x)^2+2 x /(a-x) +1
=2+[2(a-x)/x+2 x /(a-x) ]+[(a-x)^2/x^2+ x^2/(a-x)^2]
≥2+2√[2(a-x)/x•2 x /(a-x) ]+ 2√[(a-x)^2/x^2•x^2/(a-x)^2]
=2+4+2=8,
∴1/x^2+1/(a-x)^2≥8/ a^2,
即y=1/x^2+1/(a-x)^2的最小值是8/ a^2,
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询