2个回答
展开全部
设|PF1|=m,|PF2|=n
∵P在椭圆上
∴m+n=2a=4 ①
∵∠F1PF2=60º,|F1F2|=2c=2√3
根据余弦定理:
m²+n²-2mncos60º=4c²
即 m²+n²-mn=12 ②
①²-②:
3mn=4
∴mn=4/3
∴SΔF1PF2=1/2mnsin60º=1/2*4/3*√3/2=√3/3
∵P在椭圆上
∴m+n=2a=4 ①
∵∠F1PF2=60º,|F1F2|=2c=2√3
根据余弦定理:
m²+n²-2mncos60º=4c²
即 m²+n²-mn=12 ②
①²-②:
3mn=4
∴mn=4/3
∴SΔF1PF2=1/2mnsin60º=1/2*4/3*√3/2=√3/3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询