求幂级数∑(n=1,∞)nx^n的收敛域与和函数。
3个回答
展开全部
把求和项里的x提出来一个
s(x)/x=∑(n=1,∞)nx^(n-1)
两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1
,(|x|<1)。
再把等式两边同时求导,得s(x)/x=(-1)/(1-x)^2,(-1<x<1)
x=-1时代入原式级数发散,x=1时代入原式级数发散,故收敛域(-1,1)
s(x)/x=∑(n=1,∞)nx^(n-1)
两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1
,(|x|<1)。
再把等式两边同时求导,得s(x)/x=(-1)/(1-x)^2,(-1<x<1)
x=-1时代入原式级数发散,x=1时代入原式级数发散,故收敛域(-1,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把求和项里的x提出来一个
s(x)/x=∑(n=1,∞)nx^(n-1)
两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1
,(|x|<1)。
再把等式两边同时求导,得s(x)/x=(-1)/(1-x)^2,(-1<x<1)
x=-1时代入原式级数发散,x=1时代入原式级数发散,故收敛域(-1,1)
s(x)/x=∑(n=1,∞)nx^(n-1)
两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1
,(|x|<1)。
再把等式两边同时求导,得s(x)/x=(-1)/(1-x)^2,(-1<x<1)
x=-1时代入原式级数发散,x=1时代入原式级数发散,故收敛域(-1,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询