单调有界准则中说,单调增有上界的数列必定收敛。但是,如果这个数列是有限多项,而且是均匀增加的,比如

单调有界准则中说,单调增有上界的数列必定收敛。但是,如果这个数列是有限多项,而且是均匀增加的,比如1.2.3.4.5.6.7,它难道是收敛的吗?... 单调有界准则中说,单调增有上界的数列必定收敛。但是,如果这个数列是有限多项,而且是均匀增加的,比如1.2.3.4.5.6.7,它难道是收敛的吗? 展开
 我来答
帐号已注销
2021-10-23 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

数列的收敛概念是只针对无穷数列来的。

有穷数列不存在收敛不收敛的概念。

有穷数列也不存在极限不极限的问题。

数列的极限只有一种,就是当n→∞的时候的极限。有穷数列n不能趋近于∞,不存在极限问题,也就不存在收敛问题。所以单调数列必收敛的前提是这个单调有界数列是个无穷数列。

数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

xindongreneu
推荐于2017-07-02 · TA获得超过9.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:86%
帮助的人:5106万
展开全部
我记得数列的收敛概念是只针对无穷数列来的,

有穷数列不存在收敛不收敛的概念。
有穷数列也不存在极限不极限的问题。
数列的极限只有一种,就是当n→∞的时候的极限。有穷数列n不能趋近于∞,不存在极限问题,也就不存在收敛问题。
所以单调数列必收敛的前提是这个单调有界数列是个无穷数列。
你就不要再去考虑只有有限项的有穷数列了。
更多追问追答
追问
另一个网友说 1.2.3.4.5.6.7收敛于最大的数,也就是7,这个说法正确吗?
追答
当然不对,
数列和函数不完全相同。对于函数,可以求某点的极限
例如f(x)=x²这个函数没,可以求x=2这个点的极限,因为函数是连续的,在x=2附近有无数个无限接近2的点,可以对这无数个点进行变化趋势的研究。
但是数列是不连续的,例如对第5项a5来说,附近就的a4和a6和a5之间,不是连续的,中间不存在a4.6、a4.8、a5.2、a5.01等项。所以从a4的值变成a5的值是某种跳变的方式变化的,不是连续变化。所以数列不存在对某个有限项进行求极限的做法。例如不能求某个数列当n=7的时候的极限。
数列的极限只有一种情况,就是当n→∞的时候的极限。所以对于有穷数列,n无法→∞,所以也不存在极限问题了。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夏侯辰逸
2016-02-20 · TA获得超过188个赞
知道小有建树答主
回答量:255
采纳率:45%
帮助的人:47.3万
展开全部
一定,收敛于M,(M=max(1,2,3,4,5,...,n));
追问
是根据数列的极限得出来的吗?可以理解为1.2.3.4……n的极限是n吗?
追答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式