已知sinx+siny=1/3 ,求z=siny-cos^2x的取值范围
2013-06-30
展开全部
高二的问题吧
已知sinx+siny=1/3则 z=sinx-cos^2y=1/3-siny-cos2y=1/3-siny-1+2sin^2y=2[sin^2y-0.5siny-(1/3)]=2(siny-1/4)^2-1/8-2/3=2(siny-1/4)^2-19/24因为-1≤siny≤1,则 -1-1/4=-5/4≤siny-1/4≤3/49/8≤2(siny-1/4)^2≤25/81/4≤2(siny-1/4)^2-19/24≤7/3即,1/4≤z≤7/3
已知sinx+siny=1/3则 z=sinx-cos^2y=1/3-siny-cos2y=1/3-siny-1+2sin^2y=2[sin^2y-0.5siny-(1/3)]=2(siny-1/4)^2-1/8-2/3=2(siny-1/4)^2-19/24因为-1≤siny≤1,则 -1-1/4=-5/4≤siny-1/4≤3/49/8≤2(siny-1/4)^2≤25/81/4≤2(siny-1/4)^2-19/24≤7/3即,1/4≤z≤7/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询