由图可知
A=2,
2π/w=13π/3-π/3=4π
解得,w=1/2
又,f(π/3)=2sin(π/6+φ)=0
所以,φ=-π/6
f(x)=2sin(x/2-π/6)
2kπ-π/2≤x/2-π/6≤2kπ+π/2
即,4kπ-2π/3≤x≤4kπ+4π/3时
f(x)单调递增
所以,f(x)的增区间为 [4kπ-2π/3,4kπ+4π/3]
x/2-π/6=2kπ+π/2,即,x=4kπ+4π/3时
f(x)有最大值=2
x/2-π/6=2kπ-π/2,即,x=4kπ-2π/3时
f(x)有最小值=-2