8.设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数
8.设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数)是该方程通解的充分必要条件是...
8.设y1(x),y2(x)为二阶常系数齐次线性方程y"+py'+qy=0的两个特解,则c1y1(x)+c2y2(x)(c1,c2为任意常数)是该方程通解的充分必要条件是
(A) y1(x)y'2(x)-y2(x)y'1(x)=0. (B) y1(x)y'2(x)-y2(x)y'1(x)≠0.
(C) y1(x)y'2(x)+y2(x)y'1(x)=0. (D) y1(x)y'2(x)+y2(x)y'1(x)≠0. 展开
(A) y1(x)y'2(x)-y2(x)y'1(x)=0. (B) y1(x)y'2(x)-y2(x)y'1(x)≠0.
(C) y1(x)y'2(x)+y2(x)y'1(x)=0. (D) y1(x)y'2(x)+y2(x)y'1(x)≠0. 展开
展开全部
A选项。
根据齐次线性方程的解的性质,y1(x)≠ky2(x)时,c1y1(x)+c2y2(x)是方程的通解。
令F(x)=y2(x)/y1(x),F′(x)≠0时,上式成立。
即 y′2(x)y1(x)-y2(x)y′1(x)/[y1(x)]²≠0。
求解步骤
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询