怎么用R语言编写一个完整的多元线性回归方程
展开全部
)attach(byu)
lm(salary ~ age+exper)
lm(salary~.,byu) #利用全部自变量做线性回归
lm()只能得出回归系数,要想得到更为详尽的回归信息,应该将结果作为数据保存或者使用“拟合模型”(fitted model)
result<-lm(salary~age+ exper + age*exper, data=byu)
summary(result)
myresid<-result$resid #获得残差
vcov(result) #针对于拟合后的模型计算方差-协方差矩阵
shapiro.test(b) #做残差的正太性检验
qqnorm(bres);qqline(bres) #做残差
lm(salary ~ age+exper)
lm(salary~.,byu) #利用全部自变量做线性回归
lm()只能得出回归系数,要想得到更为详尽的回归信息,应该将结果作为数据保存或者使用“拟合模型”(fitted model)
result<-lm(salary~age+ exper + age*exper, data=byu)
summary(result)
myresid<-result$resid #获得残差
vcov(result) #针对于拟合后的模型计算方差-协方差矩阵
shapiro.test(b) #做残差的正太性检验
qqnorm(bres);qqline(bres) #做残差
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询