如果x服从正态分布N则x平方服从什么分布?

 我来答
蔷祀
高粉答主

2019-05-29 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15万
展开全部

如果x服从正态分布N,则x平方服从N(u,(σ^2)/n)。

因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).

均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n

E(Y)= E [X] = - E [X] = 0 Y(Y)= E [YE(Y)] ^ 2 = E [ - X - 0] ^ 2 = E [X ^ 2] = 1

因此,随机变量Y = - X的意思是0,方差为1 服从标准正态分布的随机变量:BR /> N(0,1)

扩展资料

正态分布的性质:

(1)如果

 

且a与b是实数,那么

 

(参见期望值和方差)。

(2)如果

 

 

是统计独立的正态随机变量,那么:

它们的和也满足正态分布

它们的差也满足正态分布

U与V两者是相互独立的。(要求X与Y的方差相等)。

(3)如果

 

 

是独立常态随机变量,那么:

它们的积XY服从概率密度函数为p的分布

 

其中K0是修正贝塞尔函数(modified Bessel function)

它们的比符合柯西分布,满足

(4)如果

 

为独立标准常态随机变量,那么

 

服从自由度为n的卡方分布

参考资料来源:百度百科-正态分布

轮看殊O
高粉答主

2019-05-19 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:750万
展开全部

正态分布的规律,均值X服从N(u,(σ^2)/n)

因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).

均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n

(1)正态分布图像关于x=μ对称,其中μ为正态分布的期望值;

(2)正态分布的标准差越小,图像在x=μ处曲率半径越小,图像越高耸,也就是意味着取值在x=μ附近的几率越大。反之亦然;

(3)正态分布曲线与x轴之间的面积为1;

(4)图像的拐点在x=μ+σ和x=μ-σ处;

(5)正态分布为中心极限定理的大样本统计分布。

扩展资料

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ba80cd1
2017-12-20 · TA获得超过5527个赞
知道小有建树答主
回答量:95
采纳率:100%
帮助的人:4.8万
展开全部

(X*)²服从自由度为1的chi-square distribution,X*是X进行标准化之后的随机变量

Y =-XX?N(0,1)这是一个线性变换,线性变换不改变的可变特性的正常分布的平均值

E(Y)= E [X] = - E [X] = 0 Y(Y)= E [YE(Y)] ^ 2 = E [ - X - 0] ^ 2 = E [X ^ 2] = 1

因此,随机变量Y = - X的意思是0,方差为1 服从标准正态分布的随机变量:BR /> N(0,1)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
厍昕葳69
2021-02-15
知道答主
回答量:2
采纳率:0%
帮助的人:1009
展开全部

 正态分布的平方满足自由度为1的卡方分布,其概率密度函数请参见卡方分布的概率密度函数。

注意,并不是服从指数分布(很多人都会搞混)。只有自由度为2的卡方分布才是指数分布。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
strongerlhr
2020-06-18
知道答主
回答量:1
采纳率:0%
帮助的人:606
展开全部
就一句话,服从自由度为1的卡方分布。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式