3个回答
展开全部
解:原式=∫ [e^x(1 + x) - e^x]/(1 + x)^2 dx
= ∫ e^x/(1 + x) dx - ∫ e^x d[- 1/(1 + x)]
= ∫ e^x/(1 + x) dx + e^x/(1 + x) - ∫ e^x/(1 + x) dx
= e^x/(1 + x) + C
扩展资料
性质:
定积分的正式名称是黎曼积分,就是把直角坐标系上的函数的图像用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图像在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.。
黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询