1/(x2+x+1)2的不定积分

1/(x2+x+1)2的不定积分... 1/(x2+x+1)2的不定积分 展开
 我来答
滚雪球的秘密
高粉答主

2019-05-11 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:103万
展开全部

∫(1/(x^2+1)^2)dx的不定积分为1/2*x/(1+x^2)+1/2arctanx+C。

解:令x=tant,则t=arctanx,且x^2+1=(tant)^2+1=(sect)^2

∫(1/(x^2+1)^2)dx

=∫(1/(sect)^4)dtant

=∫((sect)^2/(sect)^4)dt

=∫(1/(sect)^2)dt

=∫(cost)^2dt

=1/2∫(cos2t+1)dt

=1/2∫cos2tdt+1/2∫1dt

=1/4sin2t+1/2t+C

=1/2sintcost+1/2t+C

由于x=tant,则sinxcosx=x/(1+x^2)

则∫(1/(x^2+1)^2)dx=1/2sintcost+1/2t+C

=1/2*x/(1+x^2)+1/2arctanx+C

扩展资料:

换元积分法可分为第一类换元法与第二类换元法。

一、第一类换元法(即凑微分法)

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如

 

二、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:

1、 根式代换法,

2、 三角代换法。

在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。

吉禄学阁

2018-04-25 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62471

向TA提问 私信TA
展开全部


如上图所示。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-05-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:703万
展开全部

答案是1/2*x/(1+x^2)+1/2arctanx+C

具体步骤如下:

∫(1/(x^2+1)^2)dx的不定积分为1/2*x/(1+x^2)+1/2arctanx+C。

解:令x=tant,则t=arctanx,且x^2+1=(tant)^2+1=(sect)^2

∫(1/(x^2+1)^2)dx

=∫(1/(sect)^4)dtant

=∫((sect)^2/(sect)^4)dt

=∫(1/(sect)^2)dt

=∫(cost)^2dt

=1/2∫(cos2t+1)dt

=1/2∫cos2tdt+1/2∫1dt

=1/4sin2t+1/2t+C

=1/2sintcost+1/2t+C

由于x=tant,则sinxcosx=x/(1+x^2)

则∫(1/(x^2+1)^2)dx=1/2sintcost+1/2t+C

=1/2*x/(1+x^2)+1/2arctanx+C

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式