级数收敛的必要条件 20

求大神告知... 求大神告知 展开
 我来答
休闲娱乐达人天际
高能答主

2020-07-03 · 致力于休闲娱乐知识的解答,分享娱乐知识。
休闲娱乐达人天际
采纳数:1605 获赞数:396533

向TA提问 私信TA
展开全部

级数收敛的必要条件是通项趋于0。

一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这dao条则可以判断该级数发散。如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法(和一个知道的收敛级数比较)。例如an=1/n,通项趋于0,但是发散。

扩展资料:

收敛级数其性质与有限和(有限项相加)相比有本质的差别,例如交换律和结合律对它不一定成立。

收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。

y神级第六人
2019-03-27 · 知道合伙人金融证券行家
y神级第六人
知道合伙人金融证券行家
采纳数:36191 获赞数:156791
北京工商大学毕业 从事印钞行业多年

向TA提问 私信TA
展开全部
首先要说明的是:没有最好用的判别法!所有判别法都是因题而异的,要看怎么出,然后才选择最恰当的判别法.下面是一些常用的判别法:
一、对于所有级数都适用的根本方法是:柯西收敛准则.因为它的本质是将级数转化成数列,从而这是一个最强的判别法,柯西收敛准则成立是级数收敛的充分必要条件.局限性:有一些数列的特征太过明显,可以用更加简洁的判别法去判别,用柯西收敛原理是浪费时间;另一方面,如果级数本身过于复杂,用柯西收敛准则也未必能很快得到证明.
二、对于正项级数,一个基本但不常用的方法是部分和有界,这同样是级数收敛的充分必要条件,这是正项级数中最强的判别法之一,局限性也是显然的:通常来说一个级数的和函数并不好求,用这种方法行不通,因此这个方法通常只有理论上的意义.
三、对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式.局限性:当级数过于复杂时,要找的那个新级数究竟是什么很难判断,通常的方法是对原级数的通项做泰勒展开,以找到与之等价的p级数.
四、对于正项级数,有柯西判别法和达朗贝尔法.这些楼上都已说到,它的实质是找等比级数与之比较.另外柯西判别法比达朗贝尔判别法强,这是因为比值的下极限小于等于开n次根号的下极限,比值的上极限大于等于开n次根号的上极限(即二楼说的这两个判别法等同是不对的).局限性:如果原级数的阶低于任何一个等比级数,这方法就完全失效了.
五、对于正项级数,有积分判别法:如果x>=1且f(x)〉=0且递减,则无穷级数(通项为f(n))与1到正无穷对f(x)作的积分同敛散.这个办法对于某些级数特别有效.局限性:由于其本质是将级数化成了反常积分,如果化成的反常积分的收敛性难以判断,则有可能该方法就把问题复杂化了.
六、对于正项级数,还有拉贝判别法与高斯判别法.拉贝判别法是将级数与通项为1/(n^alpha)的级数做比较,如果当n充分大时,n(a[n]/a[n+1]-1)〉=r>1,那么级数收敛.高斯判别法将级数与通项为1/(n(lnn)^alpha)的级数做比较,如果a[n]/a[n+1]=1+1/n+beta/nlnn+o(1/nlnn),其中beta〉1,则级数收敛.局限性:这两个判别法已经很强了,大部分级数都可以用
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友9bd591d8
2019-03-26 · TA获得超过104个赞
知道答主
回答量:128
采纳率:15%
帮助的人:11.4万
展开全部
级数收敛的必要条件是通项an趋于0。 一般验证一个级数是否收敛,首先看通项an是否趋于0,若不满足这条则可以判断该级数发散。
如果这条满足,并不能保证级数收敛。需要继续验证别的条件,例如用比较判别法(和一个知道的收敛级数比较)。例如an=1/n,通项趋于0,但是发散。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-07-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1539万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式