高中数学问题,,函数,求大神进来帮忙 10
1函数f(x)=2sin²wx+((根号3)乘以(sin2wx))-1。。。。。。(w大于0)求。。。1若对于任意x属于r,恒有f(x1)≤f(x)≤f(x2)...
1函数f(x)=2sin²wx+((根号3)乘以(sin2wx))-1。。。。。。(w大于0)求。。。1若对于任意x属于r,恒有f(x1)≤f(x)≤f(x2)求(x1-x2)的绝对值的最小值。。。。。2若对于任意的x属于r,恒有f(x)≤f(1),请你判断f(x+1)奇偶性。。。。。3若f(x)在0到四分之π的闭区间上是单调函数,求整数w的值。。。。。。。。。。。。。。。。。。。。。。。。。。第二题,设向量a=(1+cosa,sina)向量b=(1-cosa,sina)向量c=(1,0)其中α属于π到2π的开区间,求。。。。。1若向量b和c的夹角为b,并且2α-b=二分之五π,求α的大小。。。。。。。2若函数f(x)=根号x。。。。求比较f(向量a乘以向量c)与f(向量b乘以向量c)的大小,求解答,求过程,谢谢
展开
1个回答
展开全部
1
1)
f(x)=2sin(wx)^2+√3sin(2wx)-1
=√3sin(2wx)-cos(2wx)
=2sin(2wx-π/6)
x∈R,f(x1)≤f(x)≤f(x2)恒成立
说明f(x)在x=x1处取得最小值-2,在逗枣x=x2处取得最大值:2
即:|x1-x2|=mT+T/2,m∈N,T为最小正周期
故当|x1-x2|为的T的一半时,宴毕即:m=0时,取最小值
T=2π/(2w),故:|x1-x2|的最小值:T/2=π/(2w)
2)
f(x)≤f(1)恒成立,即:f(x)在x=1处能取得最大值
即:2w-π/6=2kπ+π/2
即:w=kπ+π/3,k∈Z
故:f(x)=2sin((2kπ+2π/3)x-π/6)
故:g(x)=f(x+1)=2sin((2kπ+2π/山祥拆3)x+2kπ+2π/3-π/6)
=2sin((2kπ+2π/3)x+2π/3-π/6)
=2sin((2kπ+2π/3)x+π/2)
=2cos((2kπ+2π/3)x)
即:g(x)为偶函数,即:f(x+1)为偶函数
3)
0≤x≤π/4,故:0≤2wx≤wπ/2
即:-π/6≤2wx-π/6≤wπ/2-π/6
f(x)是单调函数,故:wπ/2-π/6≤π/2
即:w≤4/3,即:w=1
2
1)
b·c=(1-cosα,sinα)·(1,0)=1-cosα=2sin(α/2)^2
|b|^2=(1-cosα)^2+sinα^2=2-2cosα=4sin(α/2)^2
α∈[π,2π],故:α/2∈[π/2,π]
故:|b|=2sin(α/2)
故:cosβ=b·c/(|b|*|c|)=2sin(α/2)^2/(2sin(α/2))
=sin(α/2)=cos(π/2-α/2)=cos(α/2-π/2)
α/2∈[π/2,π],故:α/2-π/2∈[0,π/2]
故:β=α/2-π/2,即:2α-β=2α-α/2+π/2
=3α/2+π/2=5π/2,即:α=4π/3
2)
a·c=(1+cosα,sinα)·(1,0)=1+cosα=2cos(α/2)^2
b·c=2sin(α/2)^2
α/2∈[π/2,π],故:f(a·c)=sqrt(2cos(α/2)^2)=-√2cos(α/2)
f(b·c)=sqrt(2sin(α/2)^2)=√2sin(α/2)
当α/2∈[π/2,3π/4],即:α∈[π,3π/2]时
f(b·c)≥f(a·c)
当α/2∈[3π/4,π],即:α∈[3π/2,2π]时
f(b·c)≤f(a·c)
1)
f(x)=2sin(wx)^2+√3sin(2wx)-1
=√3sin(2wx)-cos(2wx)
=2sin(2wx-π/6)
x∈R,f(x1)≤f(x)≤f(x2)恒成立
说明f(x)在x=x1处取得最小值-2,在逗枣x=x2处取得最大值:2
即:|x1-x2|=mT+T/2,m∈N,T为最小正周期
故当|x1-x2|为的T的一半时,宴毕即:m=0时,取最小值
T=2π/(2w),故:|x1-x2|的最小值:T/2=π/(2w)
2)
f(x)≤f(1)恒成立,即:f(x)在x=1处能取得最大值
即:2w-π/6=2kπ+π/2
即:w=kπ+π/3,k∈Z
故:f(x)=2sin((2kπ+2π/3)x-π/6)
故:g(x)=f(x+1)=2sin((2kπ+2π/山祥拆3)x+2kπ+2π/3-π/6)
=2sin((2kπ+2π/3)x+2π/3-π/6)
=2sin((2kπ+2π/3)x+π/2)
=2cos((2kπ+2π/3)x)
即:g(x)为偶函数,即:f(x+1)为偶函数
3)
0≤x≤π/4,故:0≤2wx≤wπ/2
即:-π/6≤2wx-π/6≤wπ/2-π/6
f(x)是单调函数,故:wπ/2-π/6≤π/2
即:w≤4/3,即:w=1
2
1)
b·c=(1-cosα,sinα)·(1,0)=1-cosα=2sin(α/2)^2
|b|^2=(1-cosα)^2+sinα^2=2-2cosα=4sin(α/2)^2
α∈[π,2π],故:α/2∈[π/2,π]
故:|b|=2sin(α/2)
故:cosβ=b·c/(|b|*|c|)=2sin(α/2)^2/(2sin(α/2))
=sin(α/2)=cos(π/2-α/2)=cos(α/2-π/2)
α/2∈[π/2,π],故:α/2-π/2∈[0,π/2]
故:β=α/2-π/2,即:2α-β=2α-α/2+π/2
=3α/2+π/2=5π/2,即:α=4π/3
2)
a·c=(1+cosα,sinα)·(1,0)=1+cosα=2cos(α/2)^2
b·c=2sin(α/2)^2
α/2∈[π/2,π],故:f(a·c)=sqrt(2cos(α/2)^2)=-√2cos(α/2)
f(b·c)=sqrt(2sin(α/2)^2)=√2sin(α/2)
当α/2∈[π/2,3π/4],即:α∈[π,3π/2]时
f(b·c)≥f(a·c)
当α/2∈[3π/4,π],即:α∈[3π/2,2π]时
f(b·c)≤f(a·c)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询