如何用拉普拉斯变换解下列微分方程?

 我来答
铎恭邵壬
2019-08-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:997万
展开全部
拉普拉斯变换具有消除导数的能力。能将微分方程变成简单的加减乘除运算。因此,用拉普拉斯变换来求解某些微分方程式很方便的。例如:y'(x)+y(x)=e^x,sy(s)+y(s)=1/(s-1)+y(0)y(s)=1/(s²-1)+y(0)/(s+1)y(x)=1/2e^x+ce^(-x))
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式