已知中心在原点的椭圆C:x^2/a^2+y^2/b^2=1的一个焦点为F1(0,3),M(x,4)(x>0)为椭圆C上一点,

三角形MOF1的面积为3/2(1)求椭圆C的方程(2)是否存在平行于OM的直线l,使得直线l与椭圆C相交于A,B两点且以线段AB为直径的圆恰好经过原点?若存在,求出直线l... 三角形MOF1的面积为3/2 (1)求椭圆C的方程(2)是否存在平行于OM的直线l,使得直线l与椭圆C相交于A,B两点且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由 展开
370116
高赞答主

2013-07-07 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
焦点坐标是F1(0,3),即有 c=3,a^2=b^2+c^2=b^2+9

S(MOF1)=1/2OF1*|X|=3/2,X=1
即M坐标是(1,4)
即有1/b^2+16/a^2=1
1/b^2+16/(b^2+9)=1
b^2+9+16b^2=b^4+9b^2
b^4-8b^2-9=0
(b^2-9)*(b^2+1)=0
b^2=9,a^2=18
故椭圆方程是y^2/18+x^2/9=1
(2)OM的斜率是4,那么直线L的斜率也是4,设直线L的方程是y=4x+m
代入到椭圆方程中有x^2/9+(16x^2+8mx+m^2)/18=1
18x^2+8mx+m^2-18=0
x1x2=(m^2-18)/18,x1+x2=-4m/9
y1y2=(4x1+m)(4x2+m)=16x1x2+4m(x1+x2)+m^2=16(m^2-18)/18-16m^2/9+m^2=m^2/9-1
以AB为直径的圆过原点.,则有OA垂直于OB,则有x1x2+y1y2=0
即有(m^2-18)/18+m^2/9-1=0
3m^2=36
m^2=12
m=土2根号3
故存在,直线的方程是y=4x土2根号3
无脚鸟╰(⇀‸↼)╯
2013-07-07 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
采纳数:6742 获赞数:132161
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。

向TA提问 私信TA
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式