1个回答
2013-07-09
展开全部
f(x)=√3sinxcosx+cos�0�5x
=√3/2sin2x+(cos2x+1)/2
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
f(x)的最小正周期为2π/2=π
∵x∈R
∴由三角函数有界性可知,
恒有: -1≤sin[2x-(π/6)]≤1
∴-2≤sin[2x-(π/6)]-1≤0
即恒有: -2≤f(x)≤0
∴最小值f(x)min=-2
=√3/2sin2x+(cos2x+1)/2
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
f(x)的最小正周期为2π/2=π
∵x∈R
∴由三角函数有界性可知,
恒有: -1≤sin[2x-(π/6)]≤1
∴-2≤sin[2x-(π/6)]-1≤0
即恒有: -2≤f(x)≤0
∴最小值f(x)min=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询